PAUL NAKATA

TitleAssistant Professor
InstitutionBaylor College of Medicine
DepartmentDepartment of Pediatrics
Address1100 BATES
Houston, TX 77030
vCardDownload vCard

    Collapse ORNG Applications 
    Collapse Verify Publications

    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Cheng N, Nakata PA. Development of a rapid and efficient protoplast isolation and transfection method for chickpea (Cicer arietinum). MethodsX. 2020; 7:101025. PMID: 32874941.
      Citations:    
    2. Cheng N, Yu H, Rao X, Park S, Connolly EL, Hirschi KD, Nakata PA. Alteration of iron responsive gene expression in Arabidopsis glutaredoxin S17 loss of function plants with or without iron stress. Plant Signal Behav. 2020 06 02; 15(6):1758455. PMID: 32351167.
      Citations:    Fields:    
    3. Zhao R, Cheng N, Nakata PA, Zhao L, Hu Q. Consumption of polysaccharides from Auricularia auricular modulates the intestinal microbiota in mice. Food Res Int. 2019 09; 123:383-392. PMID: 31284990.
      Citations: 1     Fields:    Translation:AnimalsCells
    4. Donelson J, Wang Q, Monroe TO, Jiang X, Zhou J, Yu H, Mo Q, Sun Q, Marini JC, Wang X, Nakata PA, Hirschi KD, Wang J, Rodney GG, Wehrens XHT, Cheng N. Cardiac-specific ablation of glutaredoxin 3 leads to cardiac hypertrophy and heart failure. Physiol Rep. 2019 04; 7(8):e14071. PMID: 31033205.
      Citations: 1     Fields:    Translation:AnimalsCells
    5. Cheng N, Foster J, Mysore KS, Wen J, Rao X, Nakata PA. Effect of Acyl Activating Enzyme (AAE) 3 on the growth and development of Medicago truncatula. Biochem Biophys Res Commun. 2018 10 20; 505(1):255-260. PMID: 30245129.
      Citations:    Fields:    Translation:AnimalsCells
    6. Xu HY, Zhang C, Li ZC, Wang ZR, Jiang XX, Shi YF, Tian SN, Braun E, Mei Y, Qiu WL, Li S, Wang B, Xu J, Navarre D, Ren D, Cheng N, Nakata PA, Graham MA, Whitham SA, Liu JZ. The MAPK Kinase Kinase GmMEKK1 Regulates Cell Death and Defense Responses. Plant Physiol. 2018 10; 178(2):907-922. PMID: 30158117.
      Citations: 2     Fields:    Translation:Animals
    7. Hu Q, Du H, Ma G, Pei F, Ma N, Yuan B, Nakata PA, Yang W. Purification, identification and functional characterization of an immunomodulatory protein from Pleurotus eryngii. Food Funct. 2018 Jul 17; 9(7):3764-3775. PMID: 29897364.
      Citations: 1     Fields:    Translation:AnimalsCells
    8. Hu Y, Wu Q, Peng Z, Sprague SA, Wang W, Park J, Akhunov E, Jagadish KSV, Nakata PA, Cheng N, Hirschi KD, White FF, Park S. Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Sci Rep. 2017 11 21; 7(1):15950. PMID: 29162892.
      Citations: 1     Fields:    Translation:AnimalsCells
    9. Wu Q, Hu Y, Sprague SA, Kakeshpour T, Park J, Nakata PA, Cheng N, Hirschi KD, White FF, Park S. Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance. Biochem Biophys Res Commun. 2017 09 30; 491(4):1034-1039. PMID: 28780355.
      Citations: 6     Fields:    Translation:AnimalsCells
    10. Yu H, Yang J, Shi Y, Donelson J, Thompson SM, Sprague S, Roshan T, Wang DL, Liu J, Park S, Nakata PA, Connolly EL, Hirschi KD, Grusak MA, Cheng N. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. Front Plant Sci. 2017; 8:1045. PMID: 28674546.
      Citations:    
    11. Nakata PA. Construction of pDUO: A bicistronic shuttle vector series for dual expression of recombinant proteins. Plasmid. 2017 01; 89:16-21. PMID: 27989736.
      Citations: 1     Fields:    Translation:Cells
    12. Lambert PM, Nakata PA. Determining the Biochemical Properties of the Oxalate Biosynthetic Component (Obc)1 from Burkholderia mallei. PLoS One. 2016; 11(9):e0163294. PMID: 27643499.
      Citations:    Fields:    Translation:Cells
    13. Schaeffer SM, Nakata PA. The expanding footprint of CRISPR/Cas9 in the plant sciences. . 2016 Jul; 35(7):1451-68. PMID: 27137209.
      Citations:    
    14. Foster J, Luo B, Nakata PA. An Oxalyl-CoA Dependent Pathway of Oxalate Catabolism Plays a Role in Regulating Calcium Oxalate Crystal Accumulation and Defending against Oxalate-Secreting Phytopathogens in Medicago truncatula. PLoS One. 2016; 11(2):e0149850. PMID: 26900946.
      Citations: 5     Fields:    Translation:Animals
    15. Hu Y, Wu Q, Sprague SA, Park J, Oh M, Rajashekar CB, Koiwa H, Nakata PA, Cheng N, Hirschi KD, White FF, Park S. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. Hortic Res. 2015; 2:15051. PMID: 26623076.
      Citations:    
    16. Nakata PA. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense. PLoS One. 2015; 10(10):e0141982. PMID: 26517544.
      Citations: 3     Fields:    Translation:Animals
    17. Schaeffer SM, Nakata PA. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. . 2015 Nov; 240:130-42. PMID: 26475194.
      Citations:    
    18. Foster J, Nakata PA. An oxalyl-CoA synthetase is important for oxalate metabolism in Saccharomyces cerevisiae. FEBS Lett. 2014 Jan 03; 588(1):160-6. PMID: 24291261.
      Citations: 8     Fields:    Translation:Animals
    19. Punshon T, Tappero R, Ricachenevsky FK, Hirschi K, Nakata PA. Contrasting calcium localization and speciation in leaves of the Medicago truncatula mutant cod5 analyzed via synchrotron X-ray techniques. Plant J. 2013 Nov; 76(4):627-33. PMID: 24033783.
      Citations: 1     Fields:    Translation:AnimalsCells
    20. Nakata PA. Engineering calcium oxalate crystal formation in Arabidopsis. Plant Cell Physiol. 2012 Jul; 53(7):1275-82. PMID: 22576773.
      Citations: 3     Fields:    Translation:AnimalsCells
    21. Foster J, Kim HU, Nakata PA, Browse J. A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis. Plant Cell. 2012 Mar; 24(3):1217-29. PMID: 22447686.
      Citations: 16     Fields:    Translation:AnimalsCells
    22. Luo B, Nakata PA. A set of GFP organelle marker lines for intracellular localization studies in Medicago truncatula. . 2012 Jun; 188-189:19-24. PMID: 22525240.
      Citations:    
    23. Nakata PA. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula. . 2012 Apr; 185-186:246-9. PMID: 22325887.
      Citations:    
    24. Nakata PA. The oxalic acid biosynthetic activity of Burkholderia mallei is encoded by a single locus. Microbiol Res. 2011 Oct 20; 166(7):531-8. PMID: 21242070.
      Citations: 6     Fields:    Translation:Cells
    25. Nakata PA, He C. Oxalic acid biosynthesis is encoded by an operon in Burkholderia glumae. FEMS Microbiol Lett. 2010 Mar; 304(2):177-82. PMID: 20141533.
      Citations: 7     Fields:    Translation:Cells
    26. Morris J, Nakata PA, McConn M, Brock A, Hirschi KD. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate. Plant Mol Biol. 2007 Jul; 64(5):613-8. PMID: 17514431.
      Citations: 7     Fields:    Translation:Animals
    27. Nakata PA, McConn MM. Genetic evidence for differences in the pathways of druse and prismatic calcium oxalate crystal formation in Medicago truncatula. Funct Plant Biol. 2007 May; 34(4):332-338. PMID: 32689359.
      Citations:    Fields:    
    28. Nakata PA, McConn M. Isolated Medicago truncatula mutants with increased calcium oxalate crystal accumulation have decreased ascorbic acid levels. . 2007 Mar-Apr; 45(3-4):216-20. PMID: 17400466.
      Citations:    
    29. Nakata PA, McConn MM. A genetic mutation that reduces calcium oxalate content increases calcium availability in Medicago truncatula. Funct Plant Biol. 2006 Jul; 33(7):703-706. PMID: 32689279.
      Citations:    Fields:    
    30. Korth KL, Doege SJ, Park SH, Goggin FL, Wang Q, Gomez SK, Liu G, Jia L, Nakata PA. Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol. 2006 May; 141(1):188-95. PMID: 16514014.
      Citations: 29     Fields:    Translation:Animals
    31. Franceschi VR, Nakata PA. Calcium oxalate in plants: formation and function. Annu Rev Plant Biol. 2005; 56:41-71. PMID: 15862089.
      Citations: 108     Fields:    Translation:AnimalsCells
    32. McConn MM, Nakata PA. Oxalate reduces calcium availability in the pads of the prickly pear cactus through formation of calcium oxalate crystals. J Agric Food Chem. 2004 Mar 10; 52(5):1371-4. PMID: 14995148.
      Citations: 4     Fields:    Translation:AnimalsCells
    33. Nakata PA. Calcium oxalate crystal morphology. Trends Plant Sci. 2002 Jul; 7(7):324. PMID: 12119171.
      Citations: 1     Fields:    Translation:AnimalsCells
    34. McConn MM, Nakata PA. Calcium oxalate crystal morphology mutants from Medicago truncatula. Planta. 2002 Jul; 215(3):380-6. PMID: 12111218.
      Citations: 7     Fields:    Translation:Animals
    35. Nakata PA, McConn MM. Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation. Plant Physiol. 2000 Nov; 124(3):1097-104. PMID: 11080287.
      Citations: 14     Fields:    Translation:AnimalsCells
    36. Nakata PA, Okita TW. Cis-elements important for the expression of the ADP-glucose pyrophosphorylase small-subunit are located both upstream and downstream from its structural gene. Mol Gen Genet. 1996 Mar 20; 250(5):581-92. PMID: 8676861.
      Citations: 4     Fields:    Translation:AnimalsCells
    37. Nakata PA, Okita TW. Differential Regulation of ADP-Glucose Pyrophosphorylase in the Sink and Source Tissues of Potato. Plant Physiol. 1995 May; 108(1):361-368. PMID: 12228481.
      Citations: 6     Fields:    
    38. Nakata PA, Anderson JM, Okita TW. Structure and expression of the potato ADP-glucose pyrophosphorylase small subunit. J Biol Chem. 1994 Dec 09; 269(49):30798-807. PMID: 7983010.
      Citations: 11     Fields:    Translation:AnimalsCells
    39. Nakata PA, Greene TW, Anderson JM, Smith-White BJ, Okita TW, Preiss J. Comparison of the primary sequences of two potato tuber ADP-glucose pyrophosphorylase subunits. Plant Mol Biol. 1991 Nov; 17(5):1089-93. PMID: 1657244.
      Citations: 31     Fields:    Translation:AnimalsCells
    40. Okita TW, Nakata PA, Anderson JM, Sowokinos J, Morell M, Preiss J. The Subunit Structure of Potato Tuber ADPglucose Pyrophosphorylase. Plant Physiol. 1990 Jun; 93(2):785-90. PMID: 16667537.
      Citations: 54     Fields:    
    NAKATA's Networks
    Click the
    Explore
    buttons for more information and interactive visualizations!
    Concepts (186)
    Explore
    _
    Co-Authors (6)
    Explore
    _
    Similar People (60)
    Explore
    _
    Same Department Expand Description
    Explore
    _
    Physical Neighbors
    _