Connection

Co-Authors

This is a "connection" page, showing publications co-authored by CHAD SHAW and WEIMIN BI.
Connection Strength

1.474
  1. Detection of Clinically Relevant Monogenic Copy-Number Variants by a Comprehensive Genome-Wide Microarray with Exonic Coverage. Clin Chem. 2025 Jan 03; 71(1):141-154.
    View in: PubMed
    Score: 0.249
  2. CNVs cause autosomal recessive genetic diseases with or without involvement of SNV/indels. Genet Med. 2020 10; 22(10):1633-1641.
    View in: PubMed
    Score: 0.182
  3. Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet. 2013; 9(9):e1003797.
    View in: PubMed
    Score: 0.114
  4. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today's genomic array era? Genet Med. 2013 Jun; 15(6):450-7.
    View in: PubMed
    Score: 0.108
  5. Detection of =1Mb microdeletions and microduplications in a single cell using custom oligonucleotide arrays. Prenat Diagn. 2012 Jan; 32(1):10-20.
    View in: PubMed
    Score: 0.101
  6. Sequencing individual genomes with recurrent genomic disorder deletions: an approach to characterize genes for autosomal recessive rare disease traits. Genome Med. 2022 09 30; 14(1):113.
    View in: PubMed
    Score: 0.053
  7. Exome sequencing efficacy and phenotypic expansions involving esophageal atresia/tracheoesophageal fistula plus. Am J Med Genet A. 2022 12; 188(12):3492-3504.
    View in: PubMed
    Score: 0.053
  8. Integrated sequencing and array comparative genomic hybridization in familial Parkinson disease. Neurol Genet. 2020 Oct; 6(5):e498.
    View in: PubMed
    Score: 0.046
  9. Validation Studies for Single Circulating Trophoblast Genetic Testing as a Form of Noninvasive Prenatal Diagnosis. Am J Hum Genet. 2019 12 05; 105(6):1262-1273.
    View in: PubMed
    Score: 0.044
  10. A clinical survey of mosaic single nucleotide variants in disease-causing genes detected by exome sequencing. Genome Med. 2019 07 26; 11(1):48.
    View in: PubMed
    Score: 0.043
  11. Reanalysis of Clinical Exome Sequencing Data. N Engl J Med. 2019 06 20; 380(25):2478-2480.
    View in: PubMed
    Score: 0.042
  12. Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. Genet Med. 2019 03; 21(3):663-675.
    View in: PubMed
    Score: 0.040
  13. Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr. 2017 12 04; 171(12):e173438.
    View in: PubMed
    Score: 0.038
  14. Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Med. 2017 09 21; 9(1):83.
    View in: PubMed
    Score: 0.038
  15. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N Engl J Med. 2017 01 05; 376(1):21-31.
    View in: PubMed
    Score: 0.036
  16. Comparison of three whole genome amplification methods for detection of genomic aberrations in single cells. Prenat Diagn. 2016 Sep; 36(9):823-30.
    View in: PubMed
    Score: 0.035
  17. Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet. 2014 Aug 07; 95(2):173-82.
    View in: PubMed
    Score: 0.030
  18. Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet. 2014 Aug; 22(8):969-78.
    View in: PubMed
    Score: 0.029
  19. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 2014 Jan; 22(1):79-87.
    View in: PubMed
    Score: 0.028
  20. Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome Res. 2013 Sep; 23(9):1383-94.
    View in: PubMed
    Score: 0.028
  21. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Res. 2013 Sep; 23(9):1395-409.
    View in: PubMed
    Score: 0.028
  22. Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with >1000 cases and review of the literature. Prenat Diagn. 2012 Apr; 32(4):351-61.
    View in: PubMed
    Score: 0.026
  23. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010 Dec; 31(12):1326-42.
    View in: PubMed
    Score: 0.023
  24. Microarray-based comparative genomic hybridization using sex-matched reference DNA provides greater sensitivity for detection of sex chromosome imbalances than array-comparative genomic hybridization with sex-mismatched reference DNA. J Mol Diagn. 2009 May; 11(3):226-37.
    View in: PubMed
    Score: 0.021
  25. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat Diagn. 2009 Jan; 29(1):29-39.
    View in: PubMed
    Score: 0.021
  26. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet. 2007 Apr; 80(4):633-49.
    View in: PubMed
    Score: 0.018
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.