Connection

Co-Authors

This is a "connection" page, showing publications co-authored by RADHE MOHAN and MICHAEL GILLIN.
Connection Strength

1.229
  1. A procedure to determine the planar integral spot dose values of proton pencil beam spots. Med Phys. 2012 Feb; 39(2):891-900.
    View in: PubMed
    Score: 0.102
  2. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams. Phys Med Biol. 2010 Feb 07; 55(3):711-21.
    View in: PubMed
    Score: 0.089
  3. Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams. Med Phys. 2009 May; 36(5):1736-43.
    View in: PubMed
    Score: 0.085
  4. Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions. Phys Med Biol. 2008 Aug 21; 53(16):4455-70.
    View in: PubMed
    Score: 0.080
  5. Incorporating partial shining effects in proton pencil-beam dose calculation. Phys Med Biol. 2008 Feb 07; 53(3):605-16.
    View in: PubMed
    Score: 0.077
  6. Effect of anatomic motion on proton therapy dose distributions in prostate cancer treatment. Int J Radiat Oncol Biol Phys. 2007 Feb 01; 67(2):620-9.
    View in: PubMed
    Score: 0.072
  7. Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys. 2005 Oct 01; 63(2):594-601.
    View in: PubMed
    Score: 0.066
  8. A comparison of two methodologies for radiotherapy treatment plan optimization and QA for clinical trials. J Appl Clin Med Phys. 2021 Oct; 22(10):329-337.
    View in: PubMed
    Score: 0.050
  9. Intensity-Modulated Proton Therapy Adaptive Planning for Patients with Oropharyngeal Cancer. Int J Part Ther. 2017; 4(2):26-34.
    View in: PubMed
    Score: 0.039
  10. Long-term outcome of phase I/II prospective study of dose-escalated proton therapy for early-stage non-small cell lung cancer. Radiother Oncol. 2017 02; 122(2):274-280.
    View in: PubMed
    Score: 0.036
  11. Establishing the feasibility of the dosimetric compliance criteria of RTOG 1308: phase III randomized trial comparing overall survival after photon versus proton radiochemotherapy for inoperable stage II-IIIB NSCLC. Radiat Oncol. 2016 May 04; 11:66.
    View in: PubMed
    Score: 0.034
  12. Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma. Int J Radiat Oncol Biol Phys. 2016 May 01; 95(1):360-367.
    View in: PubMed
    Score: 0.034
  13. Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients. Radiother Oncol. 2015 Mar; 114(3):367-72.
    View in: PubMed
    Score: 0.032
  14. Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice. Int J Radiat Oncol Biol Phys. 2014 Jul 15; 89(4):846-53.
    View in: PubMed
    Score: 0.030
  15. Assessing the robustness of passive scattering proton therapy with regard to local recurrence in stage III non-small cell lung cancer: a secondary analysis of a phase II trial. Radiat Oncol. 2014 May 06; 9:108.
    View in: PubMed
    Score: 0.030
  16. Therapy-resistant cancer stem cells have differing sensitivity to photon versus proton beam radiation. J Thorac Oncol. 2013 Dec; 8(12):1484-91.
    View in: PubMed
    Score: 0.029
  17. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: a treatment planning comparison. Med Dosim. 2013; 38(4):390-4.
    View in: PubMed
    Score: 0.028
  18. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system. Med Phys. 2012 Mar; 39(3):1239-46.
    View in: PubMed
    Score: 0.026
  19. Parameterization of multiple Bragg curves for scanning proton beams using simultaneous fitting of multiple curves. Phys Med Biol. 2011 Dec 21; 56(24):7725-35.
    View in: PubMed
    Score: 0.025
  20. Phase 2 study of high-dose proton therapy with concurrent chemotherapy for unresectable stage III nonsmall cell lung cancer. Cancer. 2011 Oct 15; 117(20):4707-13.
    View in: PubMed
    Score: 0.024
  21. Toxicity and patterns of failure of adaptive/ablative proton therapy for early-stage, medically inoperable non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2011 Aug 01; 80(5):1350-7.
    View in: PubMed
    Score: 0.024
  22. An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle. Med Phys. 2010 Sep; 37(9):4960-70.
    View in: PubMed
    Score: 0.023
  23. Experimental characterization of the low-dose envelope of spot scanning proton beams. Phys Med Biol. 2010 Jun 21; 55(12):3467-78.
    View in: PubMed
    Score: 0.023
  24. The M. D. Anderson proton therapy system. Med Phys. 2009 Sep; 36(9):4068-83.
    View in: PubMed
    Score: 0.022
  25. Liquid scintillator for 2D dosimetry for high-energy photon beams. Med Phys. 2009 May; 36(5):1478-85.
    View in: PubMed
    Score: 0.021
  26. Proton radiotherapy for liver tumors: dosimetric advantages over photon plans. Med Dosim. 2008; 33(4):259-67.
    View in: PubMed
    Score: 0.019
  27. Daily targeting of liver tumors: screening patients with a mock treatment and using a combination of internal and external fiducials for image-guided respiratory-gated radiotherapy. Med Phys. 2007 Dec; 34(12):4591-3.
    View in: PubMed
    Score: 0.019
  28. Reduced neutron production through use of a flattening-filter-free accelerator. Int J Radiat Oncol Biol Phys. 2007 Jul 15; 68(4):1260-4.
    View in: PubMed
    Score: 0.019
  29. Preclinical biologic assessment of proton beam relative biologic effectiveness at Proton Therapy Center Houston. Int J Radiat Oncol Biol Phys. 2007 Jul 15; 68(4):968-70.
    View in: PubMed
    Score: 0.018
  30. Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT. Int J Radiat Oncol Biol Phys. 2007 Feb 01; 67(2):630-8.
    View in: PubMed
    Score: 0.018
  31. Monte Carlo study of photon fields from a flattening filter-free clinical accelerator. Med Phys. 2006 Apr; 33(4):820-7.
    View in: PubMed
    Score: 0.017
  32. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006 Apr 07; 51(7):1907-17.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.