Connection

Co-Authors

This is a "connection" page, showing publications co-authored by HAGOP M KANTARJIAN and KOICHI TAKAHASHI.
Connection Strength

10.331
  1. Clonal evolution of hematopoietic stem cells after cancer chemotherapy. bioRxiv. 2024 May 24.
    View in: PubMed
    Score: 0.241
  2. Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms. Blood. 2022 10 20; 140(16):1753-1763.
    View in: PubMed
    Score: 0.216
  3. Retrospective comparison of survival and responses to Fludarabine, Cytarabine, GCSF (FLAG) in combination with gemtuzumab ozogamicin (GO) or Idarubicin (IDA) in patients with newly diagnosed core binding factor (CBF) acute myelogenous leukemia: MD Anderson experience in 174 patients. Am J Hematol. 2022 11; 97(11):1427-1434.
    View in: PubMed
    Score: 0.215
  4. Low-dose dasatinib 50?mg/day versus standard-dose dasatinib 100?mg/day as frontline therapy in chronic myeloid leukemia in chronic phase: A propensity score analysis. Am J Hematol. 2022 11; 97(11):1413-1418.
    View in: PubMed
    Score: 0.214
  5. Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia. J Clin Oncol. 2022 11 20; 40(33):3848-3857.
    View in: PubMed
    Score: 0.211
  6. Venetoclax combined with FLAG-IDA induction and consolidation in newly diagnosed acute myeloid leukemia. Am J Hematol. 2022 08; 97(8):1035-1043.
    View in: PubMed
    Score: 0.210
  7. Clonal dynamics and clinical implications of postremission clonal hematopoiesis in acute myeloid leukemia. Blood. 2021 11 04; 138(18):1733-1739.
    View in: PubMed
    Score: 0.202
  8. Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. J Clin Oncol. 2021 09 01; 39(25):2768-2778.
    View in: PubMed
    Score: 0.196
  9. Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. Nat Commun. 2021 05 10; 12(1):2607.
    View in: PubMed
    Score: 0.196
  10. Author Correction: Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2021 May 10; 12(1):2823.
    View in: PubMed
    Score: 0.196
  11. Publisher Correction: Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020 Nov 19; 11(1):5996.
    View in: PubMed
    Score: 0.189
  12. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020 10 21; 11(1):5327.
    View in: PubMed
    Score: 0.188
  13. Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematol. 2020 Jul; 7(7):e523-e533.
    View in: PubMed
    Score: 0.184
  14. Long-term follow-up of lower dose dasatinib (50?mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2020 01 01; 126(1):67-75.
    View in: PubMed
    Score: 0.175
  15. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematol. 2019 Sep; 6(9):e480-e488.
    View in: PubMed
    Score: 0.173
  16. Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nat Commun. 2018 07 10; 9(1):2670.
    View in: PubMed
    Score: 0.161
  17. Early results of lower dose dasatinib (50?mg daily) as frontline therapy for newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2018 07 01; 124(13):2740-2747.
    View in: PubMed
    Score: 0.159
  18. Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. J Clin Oncol. 2018 06 20; 36(18):1788-1797.
    View in: PubMed
    Score: 0.158
  19. Salvage Chemoimmunotherapy With Inotuzumab Ozogamicin Combined With Mini-Hyper-CVD for Patients With Relapsed or Refractory Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia: A Phase 2 Clinical Trial. JAMA Oncol. 2018 Feb 01; 4(2):230-234.
    View in: PubMed
    Score: 0.156
  20. Clinical implications of cancer gene mutations in patients with chronic lymphocytic leukemia treated with lenalidomide. Blood. 2018 04 19; 131(16):1820-1832.
    View in: PubMed
    Score: 0.156
  21. Copy number alterations detected as clonal hematopoiesis of indeterminate potential. Blood Adv. 2017 Jun 27; 1(15):1031-1036.
    View in: PubMed
    Score: 0.149
  22. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017 01; 18(1):100-111.
    View in: PubMed
    Score: 0.144
  23. A propensity score matching analysis of dasatinib and nilotinib as a frontline therapy for patients with chronic myeloid leukemia in chronic phase. Cancer. 2016 Nov 15; 122(21):3336-3343.
    View in: PubMed
    Score: 0.141
  24. TP53 mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer. 2016 Nov 15; 122(22):3484-3491.
    View in: PubMed
    Score: 0.140
  25. Clinical implications of TP53 mutations in myelodysplastic syndromes treated with hypomethylating agents. Oncotarget. 2016 Mar 22; 7(12):14172-87.
    View in: PubMed
    Score: 0.137
  26. Clofarabine Plus Low-Dose Cytarabine Is as Effective as and Less Toxic Than Intensive Chemotherapy in Elderly AML Patients. Clin Lymphoma Myeloma Leuk. 2016 Mar; 16(3):163-8.e1-2.
    View in: PubMed
    Score: 0.134
  27. CCL3 and CCL4 are biomarkers for B cell receptor pathway activation and prognostic serum markers in diffuse large B cell lymphoma. Br J Haematol. 2015 Dec; 171(5):726-35.
    View in: PubMed
    Score: 0.132
  28. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015 Aug; 90(8):732-6.
    View in: PubMed
    Score: 0.131
  29. Clonal evolution of acute myeloid leukemia relapsed after 19 years of remission. Am J Hematol. 2015 Jul; 90(7):E134-5.
    View in: PubMed
    Score: 0.130
  30. JAK2 p.V617F detection and allele burden measurement in peripheral blood and bone marrow aspirates in patients with myeloproliferative neoplasms. Blood. 2013 Nov 28; 122(23):3784-6.
    View in: PubMed
    Score: 0.115
  31. Clinical characteristics and outcomes of therapy-related chronic myelomonocytic leukemia. Blood. 2013 Oct 17; 122(16):2807-11; quiz 2920.
    View in: PubMed
    Score: 0.114
  32. Dynamic acquisition of FLT3 or RAS alterations drive a subset of patients with lower risk MDS to secondary AML. Leukemia. 2013 Oct; 27(10):2081-3.
    View in: PubMed
    Score: 0.113
  33. Salvage therapy using FLT3 inhibitors may improve long-term outcome of relapsed or refractory AML in patients with FLT3-ITD. Br J Haematol. 2013 Jun; 161(5):659-666.
    View in: PubMed
    Score: 0.111
  34. Chromosome 5q deletion is extremely rare in patients with myelofibrosis. Leuk Res. 2013 May; 37(5):552-5.
    View in: PubMed
    Score: 0.110
  35. Outcomes and genetic dynamics of acute myeloid leukemia at first relapse. Haematologica. 2024 Nov 01; 109(11):3543-3556.
    View in: PubMed
    Score: 0.062
  36. Therapy-related chronic myelomonocytic leukemia does not have the high-risk features of a therapy-related neoplasm. Blood Adv. 2024 06 11; 8(11):2695-2706.
    View in: PubMed
    Score: 0.061
  37. TP53 Y220C mutations in patients with myeloid malignancies. Leuk Lymphoma. 2024 Oct; 65(10):1511-1515.
    View in: PubMed
    Score: 0.061
  38. Targeting MCL1-driven anti-apoptotic pathways overcomes blast progression after hypomethylating agent failure in chronic myelomonocytic leukemia. Cell Rep Med. 2024 Jun 18; 5(6):101585.
    View in: PubMed
    Score: 0.060
  39. Exploring the landscape of somatic ASXL2 mutations in myeloid neoplasms: Frequency and clinical implications. Am J Hematol. 2024 07; 99(7):1434-1436.
    View in: PubMed
    Score: 0.060
  40. Cancer patients with clonal hematopoiesis die from primary malignancy or comorbidities despite higher rates of transformation to myeloid neoplasms. Cancer Med. 2024 Mar; 13(5):e7093.
    View in: PubMed
    Score: 0.059
  41. Influence of co-mutational patterns in disease phenotype and clinical outcomes of chronic myelomonocytic leukemia. Leukemia. 2024 May; 38(5):1178-1181.
    View in: PubMed
    Score: 0.059
  42. Prognostic risk signature in patients with acute myeloid leukemia treated with hypomethylating agents and venetoclax. Blood Adv. 2024 02 27; 8(4):927-935.
    View in: PubMed
    Score: 0.059
  43. Ivosidenib significantly reduces triazole levels in patients with acute myeloid leukemia and myelodysplastic syndrome. Cancer. 2024 Jun 01; 130(11):1964-1971.
    View in: PubMed
    Score: 0.059
  44. Response patterns and impact of MRD in patients with IDH1/2-mutated AML treated with venetoclax and hypomethylating agents. Blood Cancer J. 2023 09 21; 13(1):148.
    View in: PubMed
    Score: 0.058
  45. Characteristics and clinical outcomes of patients with acute myeloid leukemia with inv(3)(q21q26.2) or t(3;3)(q21;q26.2). Haematologica. 2023 09 01; 108(9):2331-2342.
    View in: PubMed
    Score: 0.057
  46. Phenotypic subtypes of leukaemic transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2023 11; 203(4):581-592.
    View in: PubMed
    Score: 0.057
  47. Geographic Disparity of Outcome in Patients With Cancer Over Decades: The Surveillance, Epidemiology, and End Results. Clin Lymphoma Myeloma Leuk. 2023 11; 23(11):e369-e378.
    View in: PubMed
    Score: 0.057
  48. A Phase Ib/II Study of Ivosidenib with Venetoclax ? Azacitidine in IDH1-Mutated Myeloid Malignancies. Blood Cancer Discov. 2023 07 05; 4(4):276-293.
    View in: PubMed
    Score: 0.057
  49. Targeted therapy with the mutant IDH2 inhibitor enasidenib for high-risk IDH2-mutant myelodysplastic syndrome. Blood Adv. 2023 06 13; 7(11):2378-2387.
    View in: PubMed
    Score: 0.057
  50. Philadelphia-Like Genetic Rearrangements in Adults With B-Cell ALL: Refractoriness to Chemotherapy and Response to Tyrosine Kinase Inhibitor in ABL Class Rearrangements. JCO Precis Oncol. 2023 05; 7:e2200707.
    View in: PubMed
    Score: 0.056
  51. Targeting MCL1-driven anti-apoptotic pathways to overcome hypomethylating agent resistance in RAS -mutated chronic myelomonocytic leukemia. bioRxiv. 2023 Apr 08.
    View in: PubMed
    Score: 0.056
  52. Clinical outcomes associated with NPM1 mutations in patients with relapsed or refractory AML. Blood Adv. 2023 03 28; 7(6):933-942.
    View in: PubMed
    Score: 0.056
  53. Causal linkage of presence of mutant NPM1 to efficacy of novel therapeutic agents against AML cells with mutant NPM1. Leukemia. 2023 06; 37(6):1336-1348.
    View in: PubMed
    Score: 0.056
  54. Outcomes of patients with therapy-related myeloid neoplasms after treatment with poly(ADP-ribose) polymerase proteins inhibitors for solid tumours. Br J Haematol. 2023 05; 201(3):e25-e29.
    View in: PubMed
    Score: 0.056
  55. Implications of RAS mutational status in subsets of patients with newly diagnosed acute myeloid leukemia across therapy subtypes. Am J Hematol. 2022 12; 97(12):1599-1606.
    View in: PubMed
    Score: 0.054
  56. Contemporary outcomes in IDH-mutated acute myeloid leukemia: The impact of co-occurring NPM1 mutations and venetoclax-based treatment. Am J Hematol. 2022 11; 97(11):1443-1452.
    View in: PubMed
    Score: 0.054
  57. Azacitidine plus venetoclax in patients with high-risk myelodysplastic syndromes or chronic myelomonocytic leukaemia: phase 1 results of a single-centre, dose-escalation, dose-expansion, phase 1-2 study. Lancet Haematol. 2022 Oct; 9(10):e756-e765.
    View in: PubMed
    Score: 0.054
  58. High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Adv. 2022 07 12; 6(13):4006-4014.
    View in: PubMed
    Score: 0.053
  59. Hypomethylating agent and venetoclax with FLT3 inhibitor "triplet" therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer J. 2022 05 02; 12(5):77.
    View in: PubMed
    Score: 0.052
  60. Correction: Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia. 2022 May; 36(5):1448.
    View in: PubMed
    Score: 0.052
  61. Venetoclax combined with induction chemotherapy in patients with newly diagnosed acute myeloid leukaemia: a post-hoc, propensity score-matched, cohort study. Lancet Haematol. 2022 May; 9(5):e350-e360.
    View in: PubMed
    Score: 0.052
  62. Dismal outcomes of patients with relapsed/refractory Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia after failure of both inotuzumab ozogamicin and blinatumomab. Am J Hematol. 2022 06 01; 97(6):E201-E204.
    View in: PubMed
    Score: 0.052
  63. Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia. 2022 05; 36(5):1253-1260.
    View in: PubMed
    Score: 0.051
  64. Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer J. 2022 01 25; 12(1):10.
    View in: PubMed
    Score: 0.051
  65. Correction to: Donor clonal hematopoiesis increases risk of acute graft versus host disease after matched sibling transplantation. Leukemia. 2022 Jan; 36(1):298.
    View in: PubMed
    Score: 0.051
  66. Outcomes of acute lymphoblastic leukemia with KMT2A (MLL) rearrangement: the MD Anderson experience. Blood Adv. 2021 12 14; 5(23):5415-5419.
    View in: PubMed
    Score: 0.051
  67. Prognostic impact of conventional cytogenetics in acute myeloid leukemia treated with venetoclax and decitabine. Leuk Lymphoma. 2021 12; 62(14):3501-3505.
    View in: PubMed
    Score: 0.050
  68. Development of TP53 mutations over the course of therapy for acute myeloid leukemia. Am J Hematol. 2021 11 01; 96(11):1420-1428.
    View in: PubMed
    Score: 0.050
  69. Ibrutinib Plus Venetoclax for First-line Treatment of Chronic Lymphocytic Leukemia: A Nonrandomized Phase 2 Trial. JAMA Oncol. 2021 Aug 01; 7(8):1213-1219.
    View in: PubMed
    Score: 0.050
  70. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax. Cancer. 2021 10 15; 127(20):3772-3781.
    View in: PubMed
    Score: 0.049
  71. Hyper-CVAD plus ofatumumab versus hyper-CVAD plus rituximab as frontline therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: A propensity score analysis. Cancer. 2021 09 15; 127(18):3381-3389.
    View in: PubMed
    Score: 0.049
  72. Donor clonal hematopoiesis increases risk of acute graft versus host disease after matched sibling transplantation. Leukemia. 2022 01; 36(1):257-262.
    View in: PubMed
    Score: 0.049
  73. Ibrutinib, fludarabine, cyclophosphamide, and obinutuzumab (iFCG) regimen for chronic lymphocytic leukemia (CLL) with mutated IGHV and without TP53 aberrations. Leukemia. 2021 12; 35(12):3421-3429.
    View in: PubMed
    Score: 0.049
  74. Isavuconazole as Primary Antifungal Prophylaxis in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome: An Open-label, Prospective, Phase 2 Study. Clin Infect Dis. 2021 05 18; 72(10):1755-1763.
    View in: PubMed
    Score: 0.049
  75. Clinicopathologic correlates and natural history of atypical chronic myeloid leukemia. Cancer. 2021 09 01; 127(17):3113-3124.
    View in: PubMed
    Score: 0.049
  76. Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Adv. 2021 04 27; 5(8):2173-2183.
    View in: PubMed
    Score: 0.049
  77. Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Adv. 2021 04 13; 5(7):1876-1883.
    View in: PubMed
    Score: 0.049
  78. Outcome of patients with chronic myeloid leukemia in lymphoid blastic phase and Philadelphia chromosome-positive acute lymphoblastic leukemia treated with hyper-CVAD and dasatinib. Cancer. 2021 08 01; 127(15):2641-2647.
    View in: PubMed
    Score: 0.049
  79. Duration of cytopenias with concomitant venetoclax and azole antifungals in acute myeloid leukemia. Cancer. 2021 07 15; 127(14):2489-2499.
    View in: PubMed
    Score: 0.049
  80. Outcome of T-cell acute lymphoblastic leukemia/lymphoma: Focus on near-ETP phenotype and differential impact of nelarabine. Am J Hematol. 2021 05 01; 96(5):589-598.
    View in: PubMed
    Score: 0.048
  81. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens. Haematologica. 2021 03 01; 106(3):894-898.
    View in: PubMed
    Score: 0.048
  82. Correction to: Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol. 2021 Feb 23; 14(1):34.
    View in: PubMed
    Score: 0.048
  83. Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with NPM1-mutated acute myeloid leukaemia. Br J Haematol. 2021 03; 192(6):1054-1063.
    View in: PubMed
    Score: 0.048
  84. Decitabine and venetoclax for IDH1/2-mutated acute myeloid leukemia. Am J Hematol. 2021 05 01; 96(5):E154-E157.
    View in: PubMed
    Score: 0.048
  85. Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer J. 2021 02 01; 11(2):25.
    View in: PubMed
    Score: 0.048
  86. Next-Generation Sequencing of DDX41 in Myeloid Neoplasms Leads to Increased Detection of Germline Alterations. Front Oncol. 2020; 10:582213.
    View in: PubMed
    Score: 0.048
  87. Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatment-related mortality. Am J Hematol. 2021 03 01; 96(3):282-291.
    View in: PubMed
    Score: 0.048
  88. Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 inhibitors. Blood Cancer Discov. 2021 03; 2(2):125-134.
    View in: PubMed
    Score: 0.047
  89. Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Adv. 2020 11 24; 4(22):5681-5689.
    View in: PubMed
    Score: 0.047
  90. Clinical outcomes and influence of mutation clonal dominance in oligomonocytic and classical chronic myelomonocytic leukemia. Am J Hematol. 2021 02 01; 96(2):E50-E53.
    View in: PubMed
    Score: 0.047
  91. Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3-ITD and IDH mutations. Cancer. 2021 02 01; 127(3):381-390.
    View in: PubMed
    Score: 0.047
  92. Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol. 2020 10 08; 13(1):132.
    View in: PubMed
    Score: 0.047
  93. Natural history of newly diagnosed myelodysplastic syndrome with isolated inv(3)/t(3;3). Am J Hematol. 2020 12; 95(12):E326-E329.
    View in: PubMed
    Score: 0.047
  94. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematol. 2020 Oct; 7(10):e724-e736.
    View in: PubMed
    Score: 0.047
  95. Clonal evolution and treatment outcomes in hematopoietic neoplasms arising in patients with germline RUNX1 mutations. Am J Hematol. 2020 11; 95(11):E313-E315.
    View in: PubMed
    Score: 0.047
  96. Germline DNMT3A mutation in familial acute myeloid leukaemia. Epigenetics. 2021 05; 16(5):567-576.
    View in: PubMed
    Score: 0.047
  97. Phase II trial of CPX-351 in patients with acute myeloid leukemia at high risk for induction mortality. Leukemia. 2020 11; 34(11):2914-2924.
    View in: PubMed
    Score: 0.046
  98. Targeted next-generation sequencing of circulating cell-free DNA vs bone marrow in patients with acute myeloid leukemia. Blood Adv. 2020 04 28; 4(8):1670-1677.
    View in: PubMed
    Score: 0.046
  99. Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Adv. 2020 04 14; 4(7):1311-1320.
    View in: PubMed
    Score: 0.045
  100. Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol. 2020 06; 95(6):612-622.
    View in: PubMed
    Score: 0.045
  101. Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv. 2020 02 11; 4(3):482-495.
    View in: PubMed
    Score: 0.045
  102. The early achievement of measurable residual disease negativity in the treatment of adults with Philadelphia-negative B-cell acute lymphoblastic leukemia is a strong predictor for survival. Am J Hematol. 2020 02; 95(2):144-150.
    View in: PubMed
    Score: 0.044
  103. Impact of the variant allele frequency of ASXL1, DNMT3A, JAK2, TET2, TP53, and NPM1 on the outcomes of patients with newly diagnosed acute myeloid leukemia. Cancer. 2020 02 15; 126(4):765-774.
    View in: PubMed
    Score: 0.044
  104. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N Engl J Med. 2019 05 30; 380(22):2095-2103.
    View in: PubMed
    Score: 0.043
  105. Efficacy and predictors of response of lenalidomide and rituximab in patients with treatment-naive and relapsed CLL. Blood Adv. 2019 05 14; 3(9):1533-1539.
    View in: PubMed
    Score: 0.043
  106. NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv. 2019 03 26; 3(6):922-933.
    View in: PubMed
    Score: 0.042
  107. NPM1 mutant variant allele frequency correlates with leukemia burden but does not provide prognostic information in NPM1-mutated acute myeloid leukemia. Am J Hematol. 2019 06; 94(6):E158-E160.
    View in: PubMed
    Score: 0.042
  108. Clonal hematopoiesis of indeterminate potential-associated mutations and risk of comorbidities in patients with myelodysplastic syndrome. Cancer. 2019 07 01; 125(13):2233-2241.
    View in: PubMed
    Score: 0.042
  109. Incidence of second malignancies in patients with chronic myeloid leukemia in the era of tyrosine kinase inhibitors. Int J Hematol. 2019 May; 109(5):545-552.
    View in: PubMed
    Score: 0.042
  110. Hematologic malignancies and Li-Fraumeni syndrome. Cold Spring Harb Mol Case Stud. 2019 02; 5(1).
    View in: PubMed
    Score: 0.042
  111. Late relapse in acute myeloid leukemia (AML): clonal evolution or therapy-related leukemia? Blood Cancer J. 2019 01 16; 9(2):7.
    View in: PubMed
    Score: 0.042
  112. Phase II Trial of MEK Inhibitor Binimetinib (MEK162) in RAS-mutant Acute Myeloid Leukemia. Clin Lymphoma Myeloma Leuk. 2019 03; 19(3):142-148.e1.
    View in: PubMed
    Score: 0.041
  113. A phase II study of omacetaxine mepesuccinate for patients with higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia after failure of hypomethylating agents. Am J Hematol. 2019 01; 94(1):74-79.
    View in: PubMed
    Score: 0.041
  114. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018 11 01; 23(5):700-713.e6.
    View in: PubMed
    Score: 0.041
  115. A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood. 2018 10 18; 132(16):1664-1674.
    View in: PubMed
    Score: 0.041
  116. High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome Res. 2018 09; 28(9):1345-1352.
    View in: PubMed
    Score: 0.040
  117. MYC protein expression is an important prognostic factor in acute myeloid leukemia. Leuk Lymphoma. 2019 01; 60(1):37-48.
    View in: PubMed
    Score: 0.040
  118. Outcomes with lower intensity therapy in TP53-mutated acute myeloid leukemia. Leuk Lymphoma. 2018 09; 59(9):2238-2241.
    View in: PubMed
    Score: 0.039
  119. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget. 2018 Feb 09; 9(11):9714-9727.
    View in: PubMed
    Score: 0.039
  120. Prediction for sustained deep molecular response of BCR-ABL1 levels in patients with chronic myeloid leukemia in chronic phase. Cancer. 2018 03 15; 124(6):1160-1168.
    View in: PubMed
    Score: 0.039
  121. Safety and Efficacy of Blinatumomab in Combination With a Tyrosine Kinase Inhibitor for the Treatment of Relapsed Philadelphia Chromosome-positive Leukemia. Clin Lymphoma Myeloma Leuk. 2017 Dec; 17(12):897-901.
    View in: PubMed
    Score: 0.038
  122. Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Adv. 2017 Jul 25; 1(17):1312-1323.
    View in: PubMed
    Score: 0.038
  123. TP53 mutation does not confer a poor outcome in adult patients with acute lymphoblastic leukemia who are treated with frontline hyper-CVAD-based regimens. Cancer. 2017 Oct 01; 123(19):3717-3724.
    View in: PubMed
    Score: 0.037
  124. Natural history of chronic myelomonocytic leukemia treated with hypomethylating agents. Am J Hematol. 2017 Jul; 92(7):599-606.
    View in: PubMed
    Score: 0.037
  125. Characteristics and outcomes of older patients with secondary acute myeloid leukemia according to treatment approach. Cancer. 2017 Aug 15; 123(16):3050-3060.
    View in: PubMed
    Score: 0.037
  126. More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood. 2017 05 04; 129(18):2584-2587.
    View in: PubMed
    Score: 0.037
  127. Outcome of Patients With Therapy-Related Acute Myeloid Leukemia With or Without a History of Myelodysplasia. Clin Lymphoma Myeloma Leuk. 2016 11; 16(11):616-624.
    View in: PubMed
    Score: 0.035
  128. Frontline therapy with high-dose imatinib versus second generation tyrosine kinase inhibitor in patients with chronic-phase chronic myeloid leukemia - a propensity score analysis. Haematologica. 2016 08; 101(8):e324-7.
    View in: PubMed
    Score: 0.035
  129. Conditional survival in patients with chronic myeloid leukemia in chronic phase in the era of tyrosine kinase inhibitors. Cancer. 2016 Jan 15; 122(2):238-48.
    View in: PubMed
    Score: 0.033
  130. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leuk Res. 2015 Dec; 39(12):1367-74.
    View in: PubMed
    Score: 0.033
  131. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia. 2016 Apr; 30(4):980-4.
    View in: PubMed
    Score: 0.033
  132. Downregulation of Protection of Telomeres 1 expression in myelodysplastic syndromes with 7q deletion. Br J Haematol. 2016 Apr; 173(1):161-5.
    View in: PubMed
    Score: 0.033
  133. Characteristics and outcomes of patients with multiple myeloma who develop therapy-related myelodysplastic syndrome, chronic myelomonocytic leukemia, or acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2015 Feb; 15(2):110-4.
    View in: PubMed
    Score: 0.030
  134. Acquisition of cytogenetic abnormalities in patients with IPSS defined lower-risk myelodysplastic syndrome is associated with poor prognosis and transformation to acute myelogenous leukemia. Am J Hematol. 2013 Oct; 88(10):831-7.
    View in: PubMed
    Score: 0.028
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.